์ผ | ์ | ํ | ์ | ๋ชฉ | ๊ธ | ํ |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 |
- ๋น ๋ฐ์ดํฐ๋ถ์๊ธฐ์ฌ
- ์๋ํด๋ผ์ฐ๋
- ๋ฐ์ดํฐ๋ถ์์ ๋ฌธ๊ฐ
- ํ์ด์ฌ
- ์ธ๋์ํ๋ง
- pandas
- ๋์ํ๋ณธ
- Lambda
- ๋น ๋ฐ์ดํฐ
- ADP
- t-test
- datascience
- ์ฃผ์ฑ๋ถ๋ถ์
- ํฌ๋กค๋ง
- ์ค๋ฒ์ํ๋ง
- ๋ฐ์ดํฐ๋ถ๊ท ํ
- iloc
- DBSCAN
- ๋ ๋ฆฝํ๋ณธ
- PCA
- ๋ฐ์ดํฐ๋ถ์
- Python
- dataframe
- ํ ์คํธ๋ถ์
- ๊ตฐ์งํ
- LDA
- opencv
- numpy
- ๋ฐ์ดํฐ๋ถ์์ค์ ๋ฌธ๊ฐ
- ADsP
๋ชฉ๋ก๐ฅ๏ธ Computer Vision/Opencv (15)
Data Science LAB
1. ์ค๊ณฝ์ ๊ฒ์ถ (Contour) : ๊ฒฝ๊ณ์ ์ ์ฐ๊ฒฐํ ์ rat, otsu = cv.threshold([์ด๋ฏธ์ง], -1, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU) cv2.findCountours(otsu, [์ค๊ณฝ์ ์ฐพ๊ธฐ ๋ชจ๋], cv2.CHAIN_APPORX_NONE) import cv2 img = cv2.imread('img.png') target_img = img.copy() gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) rat, otsu = cv2.threshold(gray, -1, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU) contours, hierachy = cv2.findContours(ots..

1. Canny Edge Detection cv2.Canny([์ด๋ฏธ์ง], ํ์ ์๊ณ๊ฐ, ์์์๊ณ๊ฐ) import cv2 img = cv2.imread('img.jpg') canny = cv2.Canny(img, 170,200) # 170๋ณด๋ค ์์ผ๋ฉด ์๊ณ๊ฐ x, 200๋ณด๋ค ํฌ๋ฉด ์๊ณ๊ฐ(๊ฒฝ๊ณ์ ) cv2.imshow('img',img) cv2.imshow('canny',canny) cv2.waitKey(0) cv2.destroyAllWindows() - ์๋ณธ ์ด๋ฏธ์ง - ์ด๋ฏธ์ง ๊ฒ์ถ import cv2 img = cv2.imread('img.jpg') def empty(pos): pass name = 'Trackbar' cv2.namedWindow(name) cv2.createTrackbar('threshold..

1. ์ด๋ฆผ(Opening) : ์นจ์ ํ ํฝ์ฐฝ cv2.dilate(erode) import cv2 import numpy as np img = cv2.imread('erode.png',cv2.IMREAD_GRAYSCALE) kernel = np.ones((3,3), dtype=np.uint8) erode = cv2.erode(img, kernel,iterations=3) dilate = cv2.dilate(erode, kernel, iterations=3) cv2.imshow('img',img) cv2.imshow('erode',erode) cv2.imshow('dilate',dilate) cv2.waitKey(0) cv2.destroyAllWindows() ์นจ์ ํ ํฝ์ฐฝํ์ฌ ๋ ธ์ด์ฆ๋ฅผ ์ ๊ฑฐํ๋ ์ฐ์ฐ์ผ๋ก ์ด..

1. ์ด๋ฏธ์ง ํฝ์ฐฝ - ์ด๋ฏธ์ง๋ฅผ ํ์ฅํ์ฌ ์์ ๊ตฌ๋ฉ์ ์ฑ์ด๋ค๊ณ ์ดํด (์ด๋ฏธ์ง๊ฐ ์ปค์ง๋ฉด์ ๊ตฌ๋ฉ์ด ์์์ง) cv2.dilatae([์ด๋ฏธ์ง], ์ปค๋, iterations) import cv2 import numpy as np kernel = np.ones((3,3),dtype = np.uint8) # kernel img = cv2.imread('dilate.png',cv2.IMREAD_GRAYSCALE) dilate1 = cv2.dilate(img, kernel, iterations=1) # ๋ฐ๋ณต ํ์ dilate2 = cv2.dilate(img, kernel, iterations=2) # ๋ฐ๋ณต ํ์ dilate3 = cv2.dilate(img, kernel, iterations=3) # ๋ฐ๋ณต ํ์ cv2.im..

1. Threshold cv2.threshold([์ด๋ฏธ์ง], ์๊ณ๊ฐ, ๋ฐํ๊ฐ, cv2.THRESH_BINARY) import cv2 img = cv2.imread('book.jpg',cv2.IMREAD_GRAYSCALE) ret, binary = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY) # 127๋ณด๋ค ํฌ๋ฉด ํฐ์, ์์ผ๋ฉด ๊ฒ์ ๋ฐํ cv2.imshow('img',img) cv2.imshow('binary',binary) cv2.waitKey(0) cv2.destroyAllWindows() 127์ ๊ธฐ์ค์ผ๋ก 127๋ณด๋ค ํฐ ๊ฐ์ด๋ฉด ๋ฐํ๊ฐ์ธ ํฐ์, ์์ ๊ฐ์ด๋ฉด ๊ฒ์ ์์ ๋ฐํํจ 2. Trackbar cv2.nameWindow([Window name]) cv2.creat..

1. ์ฌ๋ค๋ฆฌ๊ผด ์ด๋ฏธ์ง ํผ์น๊ธฐ cv2.getPerspectiveTransform([input], [output]) cv2.warpPerspective([์ด๋ฏธ์ง], [matrix], [(width, height)]) import cv2 import numpy as np img = cv2.imread('img.jpg') width, height = 640,240 src = np.array([[511,352], [1008,345], [1122,584], [455,594]], dtype = np.float32) # input 4๊ฐ ์ง์ dat = np.array([[0,0], [width,0], [width,height], [0,height]], dtype=np.float32) # output 4๊ฐ ์ง์ # ์ข์..