250x250
Link
๋์ GitHub Contribution ๊ทธ๋ํ
Loading data ...
Notice
Recent Posts
Recent Comments
์ผ | ์ | ํ | ์ | ๋ชฉ | ๊ธ | ํ |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 |
Tags
- PCA
- Lambda
- ์๋ํด๋ผ์ฐ๋
- numpy
- ๋ฐ์ดํฐ๋ถ์์ ๋ฌธ๊ฐ
- iloc
- opencv
- ADsP
- ํ ์คํธ๋ถ์
- ๋์ํ๋ณธ
- ADP
- ์ค๋ฒ์ํ๋ง
- ๋ ๋ฆฝํ๋ณธ
- pandas
- ํฌ๋กค๋ง
- t-test
- ๋ฐ์ดํฐ๋ถ์์ค์ ๋ฌธ๊ฐ
- ๋ฐ์ดํฐ๋ถ์
- dataframe
- ์ธ๋์ํ๋ง
- DBSCAN
- ๋ฐ์ดํฐ๋ถ๊ท ํ
- ๋น ๋ฐ์ดํฐ๋ถ์๊ธฐ์ฌ
- datascience
- ํ์ด์ฌ
- LDA
- Python
- ๊ตฐ์งํ
- ๋น ๋ฐ์ดํฐ
- ์ฃผ์ฑ๋ถ๋ถ์
Archives
Data Science LAB
[Python] ๋ฐ์ดํฐ EDA๋ฅผ ํ๋ฒ์ ํ๋ ๋ฐฉ๋ฒ(pandas profiling) ๋ณธ๋ฌธ
๐ Machine Learning/๋ฐ์ดํฐ ์ ์ฒ๋ฆฌ
[Python] ๋ฐ์ดํฐ EDA๋ฅผ ํ๋ฒ์ ํ๋ ๋ฐฉ๋ฒ(pandas profiling)
ใ ใ ใ ใ 2022. 4. 6. 19:56728x90
pandas - profiling์ ์ด์ฉํ๋ฉด EDA๋ฅผ ์ง์ ํ์ง ์์๋ ๋จ
1. pandas profiling ์ค์น
>> pip install -U pandas-profiling
2. ๋ผ์ด๋ธ๋ฌ๋ฆฌ ๋ถ๋ฌ์ค๊ธฐ
import pandas_profiling
3. ์คํ
import pandas as pd
from sklearn.datasets import load_iris
import pandas_profiling
from pandas_profiling import ProfileReport
iris = load_iris()
iris = pd.DataFrame(iris.data,columns=iris.feature_names)
iris['class'] = load_iris().target
iris['class'] = iris['class'].map({0:'Setosa',1:'Versicolour',2:'Virginica'})
ProfileReport(iris)
728x90
'๐ Machine Learning > ๋ฐ์ดํฐ ์ ์ฒ๋ฆฌ' ์นดํ ๊ณ ๋ฆฌ์ ๋ค๋ฅธ ๊ธ
[Python] ๊ฒฐ์ธก์น ์ค์๊ฐ์ผ๋ก ์ฑ์ฐ๊ธฐ (0) | 2022.09.17 |
---|---|
[๋จธ์ ๋ฌ๋/ML] ๊ฒฐ์ธก์น ์ฒ๋ฆฌ ๋ฐฉ๋ฒ (0) | 2022.06.04 |
[Python] OverSampling/UnderSampling (0) | 2022.03.14 |